Files
webref/backend/app/images/export_composite.py
Danilo Reyes d4fbdf9273
All checks were successful
CI/CD Pipeline / VM Test - backend-integration (push) Successful in 11s
CI/CD Pipeline / VM Test - full-stack (push) Successful in 8s
CI/CD Pipeline / VM Test - performance (push) Successful in 8s
CI/CD Pipeline / VM Test - security (push) Successful in 8s
CI/CD Pipeline / Backend Linting (push) Successful in 3s
CI/CD Pipeline / Frontend Linting (push) Successful in 18s
CI/CD Pipeline / Nix Flake Check (push) Successful in 43s
CI/CD Pipeline / CI Summary (push) Successful in 0s
phase 15
2025-11-02 15:16:00 -06:00

229 lines
7.3 KiB
Python

"""Composite image generation for board export."""
import io
from fastapi import HTTPException, status
from fastapi.responses import StreamingResponse
from PIL import Image as PILImage
from sqlalchemy.orm import Session
from app.core.storage import storage_client
from app.database.models.board import Board
from app.database.models.board_image import BoardImage
from app.database.models.image import Image
def create_composite_export(board_id: str, db: Session, scale: float = 1.0, format: str = "PNG") -> StreamingResponse:
"""
Create a composite image showing the entire board layout.
Args:
board_id: Board UUID
db: Database session
scale: Resolution multiplier (1x, 2x, 4x)
format: Output format (PNG or JPEG)
Returns:
StreamingResponse with composite image
Raises:
HTTPException: If export fails
"""
try:
# Get board
board = db.query(Board).filter(Board.id == board_id).first()
if not board:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail="Board not found",
)
# Get all images for the board with positions
board_images = (
db.query(BoardImage, Image)
.join(Image, BoardImage.image_id == Image.id)
.filter(BoardImage.board_id == board_id)
.order_by(BoardImage.z_order)
.all()
)
if not board_images:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail="No images found for this board",
)
# Calculate canvas bounds
bounds = _calculate_canvas_bounds(board_images)
if not bounds:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail="Unable to calculate canvas bounds",
)
min_x, min_y, max_x, max_y = bounds
# Calculate canvas size with padding
padding = 50
canvas_width = int((max_x - min_x + 2 * padding) * scale)
canvas_height = int((max_y - min_y + 2 * padding) * scale)
# Limit canvas size to prevent memory issues
max_dimension = 8192 # 8K resolution limit
if canvas_width > max_dimension or canvas_height > max_dimension:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"Composite image too large (max {max_dimension}x{max_dimension})",
)
# Create blank canvas
if format.upper() == "JPEG":
canvas = PILImage.new("RGB", (canvas_width, canvas_height), color=(255, 255, 255))
else:
canvas = PILImage.new("RGBA", (canvas_width, canvas_height), color=(255, 255, 255, 255))
# Composite each image onto canvas
for board_image, image in board_images:
try:
# Get image from storage
image_data = storage_client.get_object(image.storage_path)
if not image_data:
continue
# Open image
pil_image = PILImage.open(io.BytesIO(image_data))
# Apply transformations
transformed_image = _apply_transformations(pil_image, board_image.transformations, scale)
# Calculate position on canvas
pos = board_image.position
x = int((pos["x"] - min_x + padding) * scale)
y = int((pos["y"] - min_y + padding) * scale)
# Paste onto canvas
if transformed_image.mode == "RGBA":
canvas.paste(transformed_image, (x, y), transformed_image)
else:
canvas.paste(transformed_image, (x, y))
except Exception as e:
# Log error but continue with other images
print(f"Warning: Failed to composite {image.filename}: {str(e)}")
continue
# Save to buffer
output = io.BytesIO()
if format.upper() == "JPEG":
canvas = canvas.convert("RGB")
canvas.save(output, format="JPEG", quality=95)
media_type = "image/jpeg"
extension = "jpg"
else:
canvas.save(output, format="PNG", optimize=True)
media_type = "image/png"
extension = "png"
output.seek(0)
# Return composite image
return StreamingResponse(
output,
media_type=media_type,
headers={
"Content-Disposition": f'attachment; filename="board_composite.{extension}"',
"Cache-Control": "no-cache",
},
)
except HTTPException:
raise
except Exception as e:
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=f"Failed to create composite export: {str(e)}",
) from e
def _calculate_canvas_bounds(board_images) -> tuple[float, float, float, float] | None:
"""
Calculate the bounding box for all images.
Args:
board_images: List of (BoardImage, Image) tuples
Returns:
Tuple of (min_x, min_y, max_x, max_y) or None
"""
if not board_images:
return None
min_x = min_y = float("inf")
max_x = max_y = float("-inf")
for board_image, image in board_images:
pos = board_image.position
transforms = board_image.transformations
x = pos["x"]
y = pos["y"]
width = image.width * transforms.get("scale", 1.0)
height = image.height * transforms.get("scale", 1.0)
min_x = min(min_x, x)
min_y = min(min_y, y)
max_x = max(max_x, x + width)
max_y = max(max_y, y + height)
return (min_x, min_y, max_x, max_y)
def _apply_transformations(image: PILImage.Image, transformations: dict, scale: float) -> PILImage.Image:
"""
Apply transformations to an image.
Args:
image: PIL Image
transformations: Transformation dict
scale: Resolution multiplier
Returns:
Transformed PIL Image
"""
# Apply scale
img_scale = transformations.get("scale", 1.0) * scale
if img_scale != 1.0:
new_width = int(image.width * img_scale)
new_height = int(image.height * img_scale)
image = image.resize((new_width, new_height), PILImage.Resampling.LANCZOS)
# Apply rotation
rotation = transformations.get("rotation", 0)
if rotation != 0:
image = image.rotate(-rotation, expand=True, resample=PILImage.Resampling.BICUBIC)
# Apply flips
if transformations.get("flipped_h", False):
image = image.transpose(PILImage.Transpose.FLIP_LEFT_RIGHT)
if transformations.get("flipped_v", False):
image = image.transpose(PILImage.Transpose.FLIP_TOP_BOTTOM)
# Apply greyscale
if transformations.get("greyscale", False):
if image.mode == "RGBA":
# Preserve alpha channel
alpha = image.split()[-1]
image = image.convert("L").convert("RGBA")
image.putalpha(alpha)
else:
image = image.convert("L")
# Apply opacity
opacity = transformations.get("opacity", 1.0)
if opacity < 1.0 and image.mode in ("RGBA", "LA"):
alpha = image.split()[-1]
alpha = alpha.point(lambda p: int(p * opacity))
image.putalpha(alpha)
return image